Quick start to matplotlib
Sometimes we just want to use a library without going into details and things that doesn't really matter to us. So after I spent sometime yesterday I figured that it would be nice to create a simple examples of how to use matplotlib (just the simple stuff).
Assuming you know python and have matplotlib already installed (google anaconda for more info).
In the below example I'm using sklearn library to do some machine learning but it is not required.
from sklearn.cluster import KMeans import matplotlib.pyplot as plt from matplotlib import colors as matplot_colors import six colors = list(six.iteritems(matplot_colors.cnames))
#assuming your data is something like this
data = [[1,1], [2,2], [3,3]]
num_of_clusters = len(data)model = KMeans(n_clusters=num_of_clusters) print len(data) print len(data[0]) model.fit(data)
for idx, bbb in enumerate(data): bus_station_point, time_point = bbb for clus in range(num_of_clusters): if model.labels_[idx] == clus: cc = colors[clus] plt.scatter([time_point],[bus_station_point], c=cc) # draw pointsfor clus in range(num_of_clusters): y, x = model.cluster_centers_[clus] plt.scatter([x], [y], c=colors[clus], marker="x", s=80) # draw x for bus, time_string in data:#show numbers plt.annotate(bus, (time_string, bus)) for idx, xy in enumerate(data[:-1]):#lines plt.plot([data[idx][1], data[idx+1][1]], [data[idx][0], data[idx+1][0]]) plt.show()
References:
http://www.galvanize.com/blog/introduction-k-means-cluster-analysis/#.V9cva5N94o8
http://matplotlib.org/examples/shapes_and_collections/scatter_demo.html
http://matplotlib.org/1.2.1/examples/pylab_examples/scatter_demo.html
http://matplotlib.org/examples/pylab_examples/scatter_star_poly.html
http://matplotlib.org/examples/color/named_colors.html
http://stackoverflow.com/questions/14432557/matplotlib-scatter-plot-with-different-text-at-each-data-point
http://stackoverflow.com/questions/6834483/how-do-you-create-line-segments-between-two-points
Comments
Post a Comment